Wire Wrap
   HOME

TheInfoList



OR:

Wire wrap is an electronic component assembly technique that was invented to wire
telephone A telephone is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be easily heard directly. A telephone converts sound, typically and most efficiently the human voice, into e ...
crossbar switch In electronics and telecommunications, a crossbar switch (cross-point switch, matrix switch) is a collection of switches arranged in a matrix configuration. A crossbar switch has multiple input and output lines that form a crossed pattern of int ...
es, and later adapted to construct electronic
circuit board A printed circuit board (PCB; also printed wiring board or PWB) is a medium used in electrical and electronic engineering to connect electronic components to one another in a controlled manner. It takes the form of a laminated sandwich struc ...
s.
Electronic component An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not ...
s mounted on an insulating board are interconnected by lengths of insulated wire run between their terminals, with the connections made by wrapping several turns of uninsulated sections of the wire around a component lead or a socket pin. Wires can be wrapped by hand or by machine, and can be hand-modified afterwards. It was popular for large-scale manufacturing in the 1960s and early 1970s, and continues today to be used for short runs and
prototype A prototype is an early sample, model, or release of a product built to test a concept or process. It is a term used in a variety of contexts, including semantics, design, electronics, and Software prototyping, software programming. A prototyp ...
s. The method eliminates the design and fabrication of a
printed circuit board A printed circuit board (PCB; also printed wiring board or PWB) is a medium used in Electrical engineering, electrical and electronic engineering to connect electronic components to one another in a controlled manner. It takes the form of a L ...
. Wire wrapping is unusual among other prototyping technologies since it allows for complex assemblies to be produced by automated equipment, but then easily repaired or modified by hand. Wire wrap construction can produce assemblies which are more reliable than printed circuits: connections are less prone to fail due to vibration or physical stresses on the base board, and the lack of
solder Solder (; NA: ) is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable ...
precludes
soldering Soldering (; ) is a process in which two or more items are joined by melting and putting a filler metal (solder) into the joint, the filler metal having a lower melting point than the adjoining metal. Unlike welding, soldering does not involv ...
faults such as corrosion, cold joints and dry joints. The connections themselves are firmer and have lower electrical resistance due to
cold welding Cold welding or contact welding is a solid-state welding process in which joining takes place without fusion or heating at the interface of the two parts to be welded. Unlike in fusion welding, no liquid or molten phase is present in the joint ...
of the wire to the terminal post at the corners. Wire wrap was used for assembly of high frequency prototypes and small production runs, including gigahertz microwave circuits and
supercomputer A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second ( FLOPS) instead of million instructions ...
s. It is unique among automated prototyping techniques in that wire lengths can be exactly controlled, and twisted pairs or magnetically shielded twisted quads can be routed together. Wire wrap construction became popular around 1960 in circuit board manufacturing, and use has now sharply declined. Surface-mount technology has made the technique much less useful than in previous decades. Solder-less breadboards and the decreasing cost of professionally made PCBs have nearly eliminated this technology.


Overview

A correctly made wire-wrap connection for 30 or 28 AWG wire is seven turns (fewer for larger wire) of bare wire with half to one and a half turns of insulated wire at the bottom for strain relief. The square hard-gold-plated post thus forms 28 redundant contacts. The silver-plated wire coating cold-welds to the gold. If corrosion occurs, it occurs on the outside of the wire, not on the gas-tight contact where oxygen cannot penetrate to form oxides. A correctly designed wire-wrap tool applies up to twenty tons of force per square inch on each joint. The electronic parts sometimes plug into sockets. The sockets are attached with cyanoacrylate (or silicone adhesive) to thin plates of glass-fiber-reinforced
epoxy Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also coll ...
(
fiberglass Fiberglass (American English) or fibreglass (Commonwealth English) is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth ...
). The sockets have square posts. The usual posts are square, high, and spaced at intervals. Premium posts are hard-drawn beryllium copper alloy plated with a of gold to prevent corrosion. Less-expensive posts are
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids such ...
with
tin Tin is a chemical element with the symbol Sn (from la, stannum) and atomic number 50. Tin is a silvery-coloured metal. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent, t ...
plating. 30
gauge Gauge ( or ) may refer to: Measurement * Gauge (instrument), any of a variety of measuring instruments * Gauge (firearms) * Wire gauge, a measure of the size of a wire ** American wire gauge, a common measure of nonferrous wire diameter, ...
(~0.0509mm2)
silver Silver is a chemical element with the Symbol (chemistry), symbol Ag (from the Latin ', derived from the Proto-Indo-European wikt:Reconstruction:Proto-Indo-European/h₂erǵ-, ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, whi ...
-plated soft
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
wire is insulated with a fluorocarbon that does not emit dangerous gases when heated. The most common insulation is "
Kynar Polyvinylidene fluoride or polyvinylidene difluoride (PVDF) is a highly non-reactive thermoplastic fluoropolymer produced by the polymerization of vinylidene difluoride. PVDF is a specialty plastic used in applications requiring the highest pu ...
". The 30 AWG Kynar wire is cut into standard lengths, then one inch of insulation is removed on each end. A "wire wrap tool" has two holes. The wire and of insulated wire are placed in a hole near the edge of the tool. The hole in the center of the tool is placed over the post. The tool is rapidly twisted. The result is that 1.5 to 2 turns of insulated wire are wrapped around the post, and above that, 7 to 9 turns of bare wire are wrapped around the post. The post has room for three such connections, although usually only one or two are needed. This permits manual wire-wrapping to be used for repairs. The turn and a half of insulated wire helps prevent wire fatigue where it meets the post. Above the turn of insulated wire, the bare wire wraps around the post. The corners of the post bite in with pressures of tons per square inch. This forces all the gases out of the area between the wire's silver plate and the post's gold or tin corners. Further, with 28 such connections (seven turns on a four-cornered post), a very reliable connection exists between the wire and the post. Furthermore, the corners of the posts are quite "sharp": they have a quite-small radius of curvature. There are three ways of placing wires on a board. In professionally built wire-wrap boards, long wires are placed first so that shorter wires mechanically secure the long wires. Also, to make an assembly more repairable, wires are applied in layers. The ends of each wire are always at the same height on the post, so that at most three wires need to be replaced to replace a wire. Also, to make the layers easier to see, they are made with different colors of insulation. In space-rated or airworthy wire-wrap assemblies, the wires are boxed, and may be conformally coated with wax to reduce vibration. Epoxy is never used for the coating because it makes an assembly unrepairable.


Application considerations

Wire-wrap works well with digital circuits with few discrete components, but is less convenient for analog systems with many discrete resistors, capacitors or other components (such elements can be soldered to a header and plugged into a wire wrap socket). The sockets are an additional cost compared to directly inserting integrated circuits into a printed circuit board, and add size and mass to a system. Multiple strands of wire may introduce cross-talk between circuits, of little consequence for digital circuits but a limitation for analog systems. The interconnected wires can radiate electromagnetic interference and have less predictable impedance than a printed circuit board. Wire-wrap construction cannot provide the ground planes and power distribution planes possible with multilayer printed circuit boards, increasing the possibility of noise.


History

Wire wrapping comes from the tradition of
rope splicing Rope splicing in ropework is the forming of a semi-permanent joint between two ropes or two parts of the same rope by partly untwisting and then interweaving their strands. Splices can be used to form a stopper at the end of a line, to form a l ...
, in which a
whipping knot A whipping knot or whipping is a binding (knot), binding of twine or Whipcord#Cord, whipcord around the end of a rope to prevent its natural tendency to fray. Some whippings are finished cleanly, as by drawing the bitter end of the cordage b ...
of smaller rope binds and secures the strands of a larger rope. Early wire wrapping was performed manually; a slow and careful process. Wire wrapping was used for splices and for finishing cable ends in suspension bridge wires and other wire rope rigging, usually with a smaller diameter wire wrapped around a larger wire or bundle of wires. Such techniques were purely mechanical, to add strength or prevent fraying. In the late 19th century,
telegraph Telegraphy is the long-distance transmission of messages where the sender uses symbolic codes, known to the recipient, rather than a physical exchange of an object bearing the message. Thus flag semaphore is a method of telegraphy, whereas p ...
linemen developed methods of making a wire splice that would be strong mechanically and also carry electricity. The
Western Union splice Western may refer to: Places *Western, Nebraska, a village in the US * Western, New York, a town in the US * Western Creek, Tasmania, a locality in Australia * Western Junction, Tasmania, a locality in Australia *Western world, countries that ...
was the strongest of such wire-wrapped splices. The wraps could be coated in
solder Solder (; NA: ) is a fusible metal alloy used to create a permanent bond between metal workpieces. Solder is melted in order to wet the parts of the joint, where it adheres to and connects the pieces after cooling. Metals or alloys suitable ...
for even greater strength and to prevent oxidation between the wires. Manually wrapped wires were common in early 20th century point-to-point electronic construction methods in which a strong connection was needed to hold the components in place. Wires were wrapped by hand around binding posts or spade lugs and then soldered. Modern wire wrapping technology was developed after WWII at
Bell Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
as a means of making electrical connections in a new relay being designed for use in the Bell Telephone system. A design team headed by
Arthur C. Keller Arthur C. Keller (August 18, 1901 – August 25, 1983) was a pioneer of high-fidelity and stereophonic recording techniques. He attended Cooper Union, Yale University and Columbia University. He joined the engineering department of Western Elect ...
developed the “Keller Wrap Gun”, and the entire wrap system was passed over to
Western Electric The Western Electric Company was an American electrical engineering and manufacturing company officially founded in 1869. A wholly owned subsidiary of American Telephone & Telegraph for most of its lifespan, it served as the primary equipment ma ...
for industrial application. After a “make or buy” committee at Western Electric decided to have the hand tool manufactured by an outside vendor, Western Electric sent the tool contract out for bids. Keller Tool of Grand Haven, Michigan, a supplier of rotary hand tools to Western Electric, won the contract and made several design changes to make the tool easier to manufacture and to use. Keller began manufacturing the tools in 1953, and subsequently obtained a license from Western Electric allowing sale of the technology on the open market. The tool was marketed under its original name – since the name of the manufacturer was coincidentally the same as the name of the inventor. IBM's first transistorized computers, introduced within the late 1950s, were built with the
IBM Standard Modular System The Standard Modular System (SMS) is a system of standard transistorized circuit boards and mounting racks developed by IBM in the late 1950s, originally for the IBM 7030 Stretch. They were used throughout IBM's second-generation computers, per ...
that used wire-wrapped backplanes.


Manual wire wrap

A manual wire wrap tool resembles a small pen. It is convenient for minor repairs. Wire wrap is one of the most repairable systems for assembling electronics. Posts can be rewrapped up to ten times without appreciable wear, provided that new wire is used each time. Slightly larger jobs are done with a manual "wire wrap gun" having a geared and spring-loaded squeeze grip to spin the bit rapidly. Such tools were used in large numbers in American
telephone exchange A telephone exchange, telephone switch, or central office is a telecommunications system used in the public switched telephone network (PSTN) or in large enterprises. It interconnects telephone subscriber lines or virtual circuits of digital syst ...
s in the last third of the 20th century, usually with a bigger bit to handle 22 or 24 AWG wire rather than the smaller 28 or 30 AWG used in circuit boards and backplanes. The larger posts can be rewrapped hundreds of times. They have persisted into the 21st century in
distribution frame Distribution may refer to: Mathematics *Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations *Probability distribution, the probability of a particular value or value range of a varia ...
s where
insulation-displacement connector An insulation-displacement contact (IDC), also known as insulation-piercing contact (IPC), is an electrical connector designed to be connected to the conductor(s) of an insulated cable by a connection process which forces a selectively sharp ...
s have not taken over entirely. Larger, hand held, high speed electric wrap guns replaced soldering in the late 1960s for permanent wiring, when installing exchange equipment. In the middle 1980s they were gradually replaced by connectorized cables. The Apollo Guidance Computer, with its short production run and stringent reliability requirements, was one of the early applications of wire wrap to computer assembly.


Semiautomated wire wrap

Semiautomated powered wire-wrap systems place "wire-wrap guns" on arms moved in two dimensions by computer-controlled motors. The guns are manually pulled down, and the trigger pressed to make a wrap. The wires are inserted into the gun manually. This system allows the operator to place wires without concern about whether they are on the correct pin, since the computer places the gun correctly. Semi-automated wire wrapping is unique among prototyping systems because it can place
twisted pair Twisted pair cabling is a type of wiring used for communications in which two conductors of a single circuit are twisted together for the purposes of improving electromagnetic compatibility. Compared to a single conductor or an untwisted ba ...
s, and twisted magnetically shielded quads, permitting the assembly of complex radar and high speed digital circuits.


Automated wire wrapping

Automated wire-wrap machines, as manufactured by the Gardner Denver Company in the 1960s and 1970s, were capable of automatically routing, cutting, stripping and wrapping wires onto an electronic "backplane" or "circuit board". The machines were driven by wiring instructions encoded onto
punched card A punched card (also punch card or punched-card) is a piece of stiff paper that holds digital data represented by the presence or absence of holes in predefined positions. Punched cards were once common in data processing applications or to di ...
s,
Mylar BoPET (biaxially-oriented polyethylene terephthalate) is a polyester film made from stretched polyethylene terephthalate (PET) and is used for its high tensile strength, chemical and dimensional stability, transparency, reflectivity, gas and a ...
punched hole tape, and early micro computers. The earliest machines (14FB and 14FG models, for example) were initially configured as "horizontal", which meant that the wire wrap board was placed upside down (pins up) onto a horizontal tooling plate, which was then rolled into the machine and locked onto a rotating (TRP table rotational position of four positions) and shifting (PLP = pallet longitudinal position of 11 positions) pallet assembly. These machines included very large hydraulic units for powering the servos that drove the ball screw mounted "A" and "B" drive carriages, a tall electronics cabinet loaded with hundreds of IBM control relays, many dozens of solenoids for controlling the various pneumatic mechanical subsystems, and an IBM 029 card reader for positioning instructions. The automatic wire wrap machines themselves were quite large, tall and square. Servicing the machines was extremely complex, and often meant climbing inside them just to work on them. This could be quite dangerous if safety interlocks were not maintained properly. Later, somewhat smaller machines were "vertical" (14FV) which meant the boards were placed onto a tooling plate with pins facing the machine operator. Gone were the hydraulic units, in favor of direct drive motors to rotate the
ball screw A ball screw (or ballscrew) is a mechanical linear actuator that translates rotational motion to linear motion with little friction. A threaded shaft provides a helical raceway for ball bearings which act as a precision screw. As well as bein ...
s, with
rotary encoder A rotary encoder, also called a shaft encoder, is an electro-mechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals. There are two main types of rotary encoder: absolute and increm ...
s to provide positioning feedback. This generally provided better visibility of the product for the operator, although maximum wrap area was significantly less than the horizontal machines. Top speeds on horizontal machines were generally around 500-600 wires per hour, while the vertical machines could reach rates as high as 1200 per hour, depending on board quality and wiring configurations.


Design automation

In wire-wrapping,
electronic design automation Electronic design automation (EDA), also referred to as electronic computer-aided design (ECAD), is a category of software tools for designing Electronics, electronic systems such as integrated circuits and printed circuit boards. The tools wo ...
can design the board, and optimize the order in which wires are placed. Some systems have been able to accept high-level logic designs written in a design language similar to
VHDL The VHSIC Hardware Description Language (VHDL) is a hardware description language (HDL) that can model the behavior and structure of digital systems at multiple levels of abstraction, ranging from the system level down to that of logic gate ...
or
Verilog Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model electronic systems. It is most commonly used in the design and verification of digital circuits at the register-transfer level of abstraction. It is als ...
and compile the designs to automatically generate a schematic and bill of materials. These usually allow simulation and debugging of logic designs before logic circuits are actually constructed. CAD for wire-wrap requires that a schematic be encoded into a netlist. A netlist is conceptually a list of pins that should be connected, with an associated signal name for all the pins that touch the signal. Often done by hand in older systems, this step is now done automatically by EDA programs that perform "schematic capture." Manual annotation is usually still required for special signals, such as high-speed, high current or noise-sensitive circuits, or special construction techniques such as twisted pairs or special routing. Annotations are encoded in a field of each record of the net list. The next step was to encode the pin positions of every device. One easy way encoded the position of lettered rows and numbered columns. Devices and pins were then renamed from names like U36-2, i.e. pin 2 of integrated circuit number 36, to names like A01-2, for pin 2 of the integrated circuit on row A, column 01. Using a precision ruler, a technician measures the distances of the rows and columns from a drill hole on the board, and enters the measurement in a file. The type of each device is also entered in a different file, linked to the device name. E.g. A01 is identified as a 74C00. A computer program then "explodes" the device list, coordinates, and device descriptions into a complete pin list for the board by using templates for each type of device. A template is map of a device's pins. It can be encoded once, and then shared by all devices of that type. Some systems can then optimize the design by experimentally swapping the positions of equivalent parts and logic gates to reduce the wire length. After each movement, the associated pins in the netlist must be renamed. Some systems have also automatically discovered power pins in the integrated circuits, and generate netlists connecting them to the nearest power pins of the board. If this is done, any special annotations or colors (e.g. white for clock signals or red for power) can be assigned, because these programs have intimate knowledge of the integrated circuit pins. The computer program then sorts both the net list and pin list to be in alphabetic order by pin name. It then reads both lists. When the pin name in the netlist matches the pin name in the pin list, it copies the physical coordinates in the pin list to the netlist. The netlist is then resorted, by net name, so that all the pins of each net are together. The next program reorders the pins in each net to shorten the wires. This reduces the cost of the board by reducing the length of wires. It also permits faster signals by reducing the capacitance of the net, and uses less power by reducing each wire's resistance. When high currents are needed, wire sizes can be halved (or standard digital wires sizes can be used for higher currents) by routing the nets as circles, rather than sequences. Some high-speed signals need the driver on one end and a resistor on the other to absorb reflections. This routing problem is equivalent to the
travelling salesman problem The travelling salesman problem (also called the travelling salesperson problem or TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each cit ...
, which is
NP complete In computational complexity theory, a problem is NP-complete when: # it is a problem for which the correctness of each solution can be verified quickly (namely, in polynomial time) and a brute-force search algorithm can find a solution by trying ...
, and therefore not amenable to a perfect solution in a reasonable time. One practical routing algorithm is to pick the pin farthest from the center of the board, then use a greedy algorithm to select the next-nearest unrouted pin with the same signal name. Once routed, each pair of nodes in a net is rewritten to become a wire, in a "wire-list." As the signal-pin list is rewritten as a wire-list, the program can assign attributes in the records to indicate whether a wire is top or bottom. This is easy: Start with the bottom. The next wire is top. The next wire is bottom, etc. As bottom and top wires are assigned, they can also be assigned the selected wire colors for bottom and top. Usually blue is used for bottom wires, and yellow for top wires. This arrangement permits manual repair or modification with the removal of at most three wires. After this, a random-routed board can have wire sizes calculated as the distance between pins, plus the stripped distances on each end, plus a percentage (usually 5%) for slack. If wires must be routed in lanes (required for some high-frequency or low-noise signals), a separate routing program reads a "lane" file to find where the lane-routed wires can be placed on a board. It then inserts "finger commands" into each wire record so that automated wire-wrap machines or assembly technicians can place the wire body into a routing lane. At the same time, it recalculates the wire's length so that it can be correctly routed. If the board is to be manually routed, needed for unusual routing instructions, twisted pairs and four-wire magnetic braids, the wire sizes are reworked into standard sizes. This permits an assembly technician to pick wires from bins of standard-length prestripped wire. The wire list is then sorted alphabetically into an optimal assembly sequence. Bottom wires are placed before top wires. Long wires are usually placed first within a level so that shorter wires will hold longer wires down. This reduces vibration of the longer wires, making the board more rugged in a vibrating environment such as a vehicle. Placing all the wires of a certain size and level at the same time makes it easier for an assembly technician to use precut, prestripped wires while using a semiautomated wire-wrapping machine. Wires of different colors, but the same size are also sorted to be placed together. A listing is made of the wires and other items needed for assembly, which is sorted and printed out for use by machine operators, and turned into a tape or card deck for the machine. This listing also allows for assembling materials before a production run. For manual and semiautomated wire-wrapping, the direction of placing a wire can be optimized for
right-handed In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to it being stronger, faster or more dextrous. The other hand, comparatively often the weaker, less dextrous or simply less subjecti ...
operators, so that wires are placed from right to left. Fully automated wire-wrap machines don't care. But in a semi-automated wire-wrap system, this moves the wrap head away from the user's hand when placing a wire. This increases safety. It also helps a user to use their strong hand and eye to route the wire. Another optimization is that within each length and color of wire, the computer selects the next wire so that the wrap head moves to the nearest pin that is to the right of the previous pin. This can save up to 40% of the assembly time, almost getting two wire-wrap machines for the price of one. It also reduces wear on the wire-wrap machines, and allows assembly technicians to place more wires per hour.


Telecommunications

In
telecommunications Telecommunication is the transmission of information by various types of technologies over wire, radio, optical, or other electromagnetic systems. It has its origin in the desire of humans for communication over a distance greater than that fe ...
wire wrap is in common high volume use in modern
communications network A telecommunications network is a group of nodes interconnected by telecommunications links that are used to exchange messages between the nodes. The links may use a variety of technologies based on the methodologies of circuit switching, messa ...
s for cross connects of copper wiring. For example, most phone lines from the
outside plant In telecommunication, the term outside plant has the following meanings: *In civilian telecommunications, outside plant refers to all of the physical cabling and supporting infrastructure (such as conduit, cabinets, tower or poles), and any associ ...
go to wire wrap panels in a central office, whether used for POTS,
DSL Digital subscriber line (DSL; originally digital subscriber loop) is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric dig ...
or T1 lines. Typically at a
main distribution frame In telephony, a main distribution frame (MDF or main frame) is a signal distribution frame for connecting equipment (inside plant) to cables and subscriber carrier equipment (outside plant). Overview The MDF is a termination point within the l ...
Internal Cross Facilities Assignments and External Cross Facilities Assignments, are connected together via jumpers that are wire wrapped. Wire wrap is popular in telecommunications since it is one of the most secure ways to attach wires, and provides excellent and consistent data layer contact. Wirewrap panels are rated for high quality data services, including
Cat 5 Category 5 cable (Cat 5) is a twisted pair cable for computer networks. Since 2001, the variant commonly in use is the Category 5e specification (Cat 5e). The cable standard provides performance of up to 100 MHz and is ...
grade wiring. The principal competitor in this application is
punch block A punch-down block (also punchdown block, punch block, punchblock, quick-connect block and other variations) is a type of electrical connection often used in telephony. It is named because the solid copper wires are "punched down" into short open ...
s, which are quicker but less secure.


See also

* Breadboard *
Stripboard Stripboard is the generic name for a widely used type of electronics prototyping material for circuit boards characterized by a pre-formed regular (rectangular) grid of holes, with wide parallel strips of copper cladding running in one direct ...
*
Wire sculpture Wire sculpture is the creation of sculpture or jewelry (sometimes called wire wrap jewelry) out of wire. The use of metal wire in jewelry dates back to the 2nd Dynasty in Egypt and to the Bronze and Iron Ages in Europe. In the 20th century, the wor ...
* Wiring pencil


External links



Punched card used to control an electropneumatic wire wrap machine.

Burroughs Corporation The Burroughs Corporation was a major American manufacturer of business equipment. The company was founded in 1886 as the American Arithmometer Company. In 1986, it merged with Sperry UNIVAC to form Unisys. The company's history paralleled many ...
promotional video showing a wire wrap machine at 09:50.

Descriptive manual for the above machine, manufactured by
Gardner Denver Ingersoll Rand is an American multinational company that provides flow creation and industrial products. The company was formed in February 2020 through the spinoff of the industrial segment of Ingersoll-Randplc (now known as Trane Technologies) ...
.


References

{{Reflist Electronics substrates Electronics manufacturing Wire